
PRINCIPLE OF INCLUSION-EXCLUSION: Let A1, . . . , An ∈ L. Then it holds

P (
n
∪
i=1

Ai) =
n∑
i=1

(−1)i−1Pi,

where

P1 =
n∑
i=1

P (Ai);

P2 =
n∑

i1<i2

P (Ai1 ∩ Ai2)

P3 =
n∑

i1<i2<i3

P (Ai1 ∩ Ai2 ∩ Ai3)

...

Pn = P (A1 ∩ · · · ∩ An).�

BONFERRONI’S INEQUALITY: Let A1, . . . , An ∈ L. Then it holds

n∑
i=1

P (Ai)−
n∑

i1<i2

P (Ai1 ∩ Ai2) ≤ P (
n
∪
i=1

Ai) ≤
n∑
i=1

P (Ai).

Proof: (=⇒) We need to show

P (
n
∪
i=1

Ai) ≤
n∑
i=1

P (Ai). (1.1)

The case when n = 1 is trivial. Let n ∈ N, n > 1, be arbitrary. From the Principle of

Inclusion-Exclusion (PIE), it is

P (
n
∪
i=1

) =
n∑
i=1

(−1)n−1Pi

=

{
P1 − (P2 − P3)− . . .− (Pn−1 − Pn) , if n is odd

P1 − (P2 − P3)− . . .− (Pn−2 − Pn−1)− Pn, if n is even.
(1.2)



But, for i > 1, it holds

Pi =
n∑

j1<j2<...<ji

P (
i
∩
k=1

Ajk)

=
n∑

j1<j2<...<ji

(
n∑

m>ji

P (
i
∩
k=1

Ajk ∩ Am) +
n∑

m>ji

P (
i
∩
k=1

Ajk ∩ Acm)

)
= Pi+1 + δ

≥ Pi+1, (1.3)

where δ ≥ 0. The result of (1.1) immediately follows from (1.2) and (1.3), since

−
[n
2 ]+1∑
i=2

(Pi − Pi+1)− 1{n is even} · Pn ≤ 0,

where [n] is the greatest integer contained in n.

(⇐=) We need to show

n∑
i=1

P (Ai)−
n∑

i1<i2

P (Ai1 ∩ Ai2) ≤ P (
n
∪
i=1

Ai). (1.4)

The result immediately follows for n = 1, since P2 = ∅, which implies that P (A1) ≤ P (A1).

Suppose that n ∈ N is arbitrary, n > 1. From the PIE, it holds

P (
n
∪
i=1

) =
n∑
i=1

(−1)n−1Pi

=

{
P1 − P2 + (P3 − P4) + . . .+ (Pn−1 − Pn) , if n is even

P1 − P2 + (P3 − P4) + . . .+ (Pn−2 − Pn−1) + Pn, if n is odd.
(1.5)

The result of (1.4) immediately follows from (1.3) and (1.5), since

[n
2 ]+1∑
i=3

(Pi − Pi+1) + 1{n is odd} · Pn ≥ 0.�

NEYMAN-PEARSON LEMMA: Suppose we wish to test H0 : X ∼ fθ0(x), versus

H1 : X ∼ fθ1(x), where fθi
is the pdf (or pmf) for X under Hi, i = 0, 1, where both H0 and

H1 are each simple.



(i) Any test of the form

φ(x) =


1, iffθ1(x) > k · fθ0(x)

γ(x), iffθ1(x) = k · fθ0(x)

0, iffθ1(x) < k · fθ0(x)

(1.6)

for some k ≥ 0, and 0 ≤ γ(x) ≤ 1, is most powerful of its significance level for testing

H0 versus H1. If k =∞, the test

φ(x) =

{
1, iffθ0(x) = 0

0, iffθ0(x) > 0
(1.7)

is most powerful of size (or significance level) 0 for testing H0 versus H1.

(ii) Given 0 ≤ α ≤ 1, there exists a test of form (1.6) or (1.7), with γ(x) = γ (i.e., a

constant) such that

Eθ0(φ(X)) = α.



Chapter 1

KEY THEOREMS: PART 2

BINOMIAL THEOREM: If n ∈ N ∪ {0}, then for a arbitrary real number x, it holds

(1 + x)n =
n∑

i=0

(
n

i

)
xi. (1.1)

Proof: Here, let x be an arbitrary real number and let n ∈ N ∪ {0} be arbitrary. Let

f(x) = (1 + x)n. Then, the Maclaurin series for f is given by

f(x) =
∞∑
i=0

f (i)(0)(x− 0)i

i!
, (1.2)

where f (0)(0) = f(0). It is,

f ′(x) = n(1 + x)n−1

f ′′(x) = n(n− 1)(1 + x)n−2

...

f (k)(x) = n(n− 1) · · · (n− k + 1)(1 + x)n−k · 1{k≤n}.

1



Thus, re-writing (1.2), it holds

f(x) =
∞∑
i=0

f (i)(0)(x− 0)i

i!

= f(0) +
n∑

i=1

n(n− 1) · · · (n− i + 1)(1 + 0)n−ixi

i!

=
n∑

i=0

n!xi

(n− i)!i!

=
n∑

i=0

(
n

i

)
xi,

as desired. Since x and n were chosen arbitrarily, this result holds for all x ∈ R and

n ∈ N ∪ {0}. Therefore, if x ∈ R and n ∈ N ∪ {0}, (1.1) holds.�

MULTIPLICATION RULE: Suppose A1, . . . , An ∈ L and P (A1∩· · ·∩An−1) > 0. Then,

it holds

P (
n
∩

i=1
Ai) = P (A1)P (A2|A1)P (A3|A1 ∩ A2) · · ·P (An|A1 ∩ · · · ∩ An−1). (1.3)

Proof: By induction w.r.t. n. To establish the basis for induction, suppose n = 2. It is,

P (A1 ∩ A2) =
P (A1 ∩ A2)

P (A1)
P (A1)

∗
= P (A2|A1)P (A1),

where (
∗
=) holds by the definition of conditional probability. This establishes the basis for

induction. Next, suppose that the result (expression (1.3)) holds for some n ∈ N, n > 2.

We need to show that (1.3) holds for (n + 1) ∈ N. Let B =
n
∩

i=1
Ai. It is,

P (
n+1
∩

i=1
Ai) = P (B ∩ An+1) =

P (An+1 ∩B)

P (B)
P (B)

∗
= P (An+1|B)P (B), (1.4)

where (
∗
=) holds by the definition of conditional probability. Also, by the induction hypoth-

esis, it holds

P (B) = P (
n
∩

i=1
Ai) = P (A1)P (A2|A1)P (A3|A1 ∩ A2) · · ·P (An|A1 ∩ · · · ∩ An−1),

so that (1.4) becomes

P (
n+1
∩

i=1
Ai) = P (B)P (An+1|B) = P (A1)P (A2|A1)P (A3|A1 ∩ A2) · · ·P (An+1|A1 ∩ · · · ∩ An),



which establishes the induction step. Therefore, by mathematical induction, for all n ∈ N,

n ≥ 2, if A1, ..., An ∈ L and P (A1 ∩ · · · ∩ An−1) > 0, then

P (
n
∩

i=1
Ai) = P (A1)P (A2|A1)P (A3|A1 ∩ A2) · · ·P (An|A1 ∩ · · · ∩ An−1).�

LAW OF TOTAL PROBABILITY: Let {Hi}∞i=1 be a partition of Ω, for which P (Hi) >

0 for all i ∈ N. If A ∈ L, it holds

P (A) =
∞∑
i=1

P (A ∩Hi) =
∞∑
i=1

P (A|Hi)P (Hi). (1.5)

Proof: For each i ∈ N, since P (Hi) > 0, it is

P (A ∩Hi) =
P (A ∩Hi)

P (Hi)
P (Hi)

∗
= P (A|Hi)P (Hi),

where (
∗
=) holds by the definition of conditional probability. Thus, it is clear that the two

summands of (1.5) are equal. Hence, it is left to show that

P (A) =
∞∑
i=1

P (A ∩Hi).

It is,

A = (A ∩H1) ∪ (A ∩H2) ∪ · · · ∪ (A ∩Hi) ∪ · · · =
∞
∪

i=1
(A ∩Hi) ,

and by PIE, it holds

P (A) = P (
∞
∪

i=1
(A ∩Hi)) =

∞∑
j=1

(−1)j−1Pj, (1.6)

where

P1 =
∞∑
i=1

P (A ∩Hi);

P2 =
∞∑

i1<i2

P (A ∩Hi2 ∩ A ∩Hi2);

...

Pj =
∞∑

i1<i2<...<ij

P (A ∩Hi2 ∩ A ∩Hi2 ∩ · · · ∩ A ∩Hij );

...



But, Pj = 0, for all j > 1, since the Hi are disjoint. The result follows immediately.

Therefore, if {Hi}∞i=1 is a partition of Ω, for which P (Hi) > 0 for all i ∈ N and A ∈ L, it

holds

P (A) =
∞∑
i=1

P (A ∩Hi) =
∞∑
i=1

P (A|Hi)P (Hi).�

BAYES’ RULE: Let {Hi}∞i=1 be a partition of Ω, such that P (Hi) > 0 for all i ∈ N, and

let A ∈ L for which P (A) > 0. Then, for all i ∈ N, it holds

P (Hi|A) =
P (A|Hi)P (Hi)
∞∑
i=1

P (A|Hi)P (Hi)
.

Proof: Since P (A) > 0, by the definition of conditional probability, it follows

P (Hi|A) =
P (Hi ∩ A)

P (A)
∗
=

P (A|Hi)P (Hi)
∞∑
i=1

P (A|Hi)P (Hi)
,

where the numerator of (
∗
=) holds by the definition of conditional probability and the deno-

miator of (
∗
=) holds by the law of total probability. Therefore, if {Hi}∞i=1 is a partition of Ω,

such that P (Hi) > 0 for all i ∈ N, and A ∈ L for which P (A) > 0, then

P (Hi|A) =
P (A|Hi)P (Hi)
∞∑
i=1

P (A|Hi)P (Hi)
.



Chapter 1

KEY THEOREMS: PART 3

MARKOV’S INEQUALITY: Let h(X) be a non-negative Borel-measurable function of

a random variable X. If E(h(X)) exists, then it holds:

P (h(X) ≥ ε) ≤ E(h(X))

ε
∀ε > 0. (1.1)

When h(X) = |X|r and ε = kr, where r, k > 0, then (1.1) reduces to

P (|X| ≥ k) ≤ E(|X|r)
kr

,

Markov’s Inequality.

Proof (continuous case): Let χ be the support of X. Since h is a non-negative function,

define the set A ⊆ χ by

A = {x ∈ χ : h(x) ≥ ε} .

Also, let Ac = χ\A, the complement of A. Suppose E(g(X)) exists. It is,

E(h(X)) =

∫
A

h(x)fX(x)dx+

∫
Ac

h(x)fX(x)dx

(A)

≥
∫
A

h(x)fX(x)dx

≥
∫
A

ε · fX(x)dx

= ε · P (h(X) ≥ ε), (1.2)

where (A) holds since h is non-negative. Dividing both sides of the inequality (1.2) by ε,

yields (1.1). When h(X) = |X|r and ε = kr, where r, k > 0, we have

P (|X| ≥ k) = P (|X|r ≥ kr) ≤ E(|X|r)
kr

, (1.3)

1



as required. Therefore, if h is a non-negative Borel-measurable function, (1.1) holds. Also,

when h(X) = |X|r and ε = kr, where r, k > 0, it follows that (1.3) (Markov’s Inequality)

holds.�

CHEBYCHEV’S INEQUALITY: Let h(X) = (X − µ)2 and ε = k2σ2, where E(X) = µ,

Var(X) = σ2 <∞, and k > 0. Then it holds

P (|X − µ| ≥ k · σ) ≤ 1

k2
. (1.4)

Proof: From Markov’s Inequality, it is

P (|X − µ| ≥ k · σ) = P (|X − µ|2 ≥ k2σ2)

≤ E((X − µ)2)

k2σ2

=
Var(X)

k2σ2

=
1

k2
,

as required. Therefore, if Var(X) exists, (1.4) holds.�

LYAPUNOV’S INEQUALITY: Let 0 < E(|X|n) < ∞. For an arbitrary k ∈ N,
2 ≤ k ≤ n, it holds (

E(|X|k−1)
) 1

k−1 ≤
(
E(|X|k)

) 1
k .

Proof: SEE STAT 6710 COURSE NOTES.

LEMMA 4.8.1: Let a and b be positive numbers and p, q > 1 such that 1
p

+ 1
q

= 1. Then

it holds that
1

p
ap +

1

q
bq ≥ a · b,

with equality holding iff ap = bq.

Proof: Fix b, and let g(a) = p−1ap + q−1bq − a · b. We proceed by minimizing g. Here,

g′(a) = ap−1 − b = 0 ⇐⇒ ap−1 = b. (1.5)

Raising each side of the equation – given by (1.5) – to the qth power, we have

ap−1 = b ⇐⇒ aq·p−q = bq ⇐⇒ ap = bq, (1.6)



since p · q = p+ q. Differentiating (1.5), it is

g′′(a) = (p− 1) ap−2 > 0,

since a > 0 and p, q > 1. This implies (along with (1.5) and (1.6)) that ap = bq is the unique

minimum for g. So,

g(ap−1 = b) =
1

p
ap +

1

q

(
ap−1

)q − a · ap−1

=
1

p
ap +

1

q
ap − ap

= ap
(

1

p
+

1

q
− 1

)
= 0.

Thus, g(a) ≥ 0. This implies that

1

p
ap +

1

q
bq − a · b ≥ 0 ⇐⇒ 1

p
ap +

1

q
bq ≥ a · b,

as desired.�

HÖLDER’S INEQUALITY: Let X, Y be two random variables. Let p, q > 1 such that
1
p

+ 1
q

= 1. Then, it holds that

E(|X · Y |) ≤ (E(|X|p))1/p(E(|Y |q))1/q.

Proof: Define a and b as follows:

a =
|X|

(E(|X|p))1/p
> 0; b =

|Y |
(E(|Y |q))1/q

> 0.

From Lemma 4.8.1, it is

1
p
|X|p

E(|X|p)
+ 1

q
|Y |q

E(|Y |q)
≥ |X|

(E(|X|p))1/p · |Y |
(E(|Y |q))1/q

⇐⇒ 1
p

+ 1
q
≥ E(|X·Y |)

(E(|X|p))1/p(E(|Y |q))1/q

⇐⇒ E(|X · Y |) ≤ (E(|X|p))1/p(E(|Y |q))1/q,

since 1
p

+ 1
q

= 1. This establishes the desired result.�



MINKOWSKI’S INEQUALITY: Let X, Y be two random variables. Then, for 1 ≤
p <∞, it holds

(E(|X + Y |p))1/p ≤ (E(|X|p))1/p + (E(|Y |p))1/p.

Proof: Suppose p = 1. From the triangle inequality, it holds

|X + Y | ≤ |X|+ |Y | ⇐⇒ E(|X + Y |) ≤ E(|X|) + E(|Y |),

which establishes the desired result. Next, suppose that p > 1, and let q = p
p−1

. This implies

that 1
q

+ 1
p

= 1. From the triangle inequality, it holds

|X + Y |p = |X + Y | · |X + Y |p−1 ≤ (|X|+ |Y |) |X + Y |p−1.

Thus, from Hölder’s Inequality, we have

E(|X + Y |p) ≤ E(|X||X + Y |p−1) + E(|Y ||X + Y |p−1)

≤ (E(|X|p))1/p
(
E(|X + Y |)q(p−1)

)1/q

+ (E(|Y |p))1/p
(
E(|X + Y |)q(p−1)

)1/q

= (E(|X|p))1/p(E(|X + Y |)p)1/q
+ (E(|Y |p))1/p(E(|X + Y |)p)1/q

.

Dividng both sides of this inequality by (E(|X + Y |)p)1/q
, we have

E(|X + Y |p)
E(|X + Y |p)1/q

≤ (E(|X|p))1/p + (E(|Y |p))1/p,

which – since 1− 1
q

= 1
p

– provides that

E(|X + Y |p)1/p ≤ (E(|X|p))1/p + (E(|Y |p))1/p,

as required.�

CAUCHY-SCHWARTZ-INEQUALITY: Let X, Y be two random variables with finite

variance. Then it holds:

(i) Cov(X, Y ) exists.

(ii) (E(X · Y ))2 ≤ E(X2)E(Y 2).

(iii) (E(X · Y ))2 = E(X2)E(Y 2) iff there exists an (α, β) ∈ R2\{(0, 0)}, such that

P (αX + βY = 0) = 1.



Proof: (i) Since X and Y each have finite variances, it follows that for i = 1, 2, E(X i) <∞
and E(Y i) <∞. Thus, from Hölder’s Inequality, taking p = q = 2, it holds

E(|X · Y |) ≤
(
E(|X|2)

)1/2(
E(|Y |2)

)1/2
<∞, (1.7)

so that E(X · Y ) exists. Hence,

E(X · Y )− E(X)E(Y ) <∞,

so that Cov(X, Y ) exists.

(ii) From (1.7), it is,

(E(|X · Y |))2 ≤ E(|X|2)E(|Y |2) = E(X2)E(Y 2). (1.8)

Since the absolute value function is convex, Jensen’s Inequality provides that

|E(X · Y )| ≤ E(|X · Y |) ⇐⇒ (E(X · Y ))2 ≤ (E(|X · Y |))2

Therefore, from (1.8), it holds

(E(X · Y ))2 ≤ (E(|X · Y |))2 ≤ E(X2)E(Y 2),

as desired.

(iii) From the course notes for (ii) (note that the proof given above is not that given in

class), a necessary and sufficient condition for equality in (ii) is that E((α ·X + β · Y )2) = 0.

Thus, it suffices to show that E((α ·X + β · Y )2) = 0 is equivalent to P (α·X+β ·Y = 0) = 1.

(=⇒) Let Z = α ·X + β · Y. Since 0 = E((α ·X + β · Y )2) = E(Z2) = Var(Z) + (E(Z))2,

and Var(Z), (E(Z))2 ≥ 0, it follows that Var(Z) = E(Z) = 0. Thus, Z ∼ Dirac(0). Hence,

1 = P (Z = 0) = P (α ·X + β · Y = 0),

as desired.

(⇐=) Suppose that P (α ·X+β ·Y = 0) = 1, for (α, β) ∈ R\{(0, 0)}. Then, P (X = −β·Y
α

) =

1, which implies

(E(X · Y ))2 =

(
E(−β · Y

α
· Y )

)2

=

(
β

α

)2(
E(Y 2)

)2
=

(
β

α

)2

E(Y 2)E(Y 2)

= E(X2)E(Y 2),



as desired. Therefore, (iii) holds.�

SLUTSKY’S THEOREM: Let {Xn}∞n=1 and {Yn}∞n=1 be sequences of random variables,

and X be a random variable, all of which are defined on a probability space (Ω, L, P ). Let

c ∈ R be a constant. Then, it holds:

(i) Xn
d−→ X, Yn

p−→ c =⇒ Xn + Yn
d−→ X + c.

(ii) Xn
d−→ X, Yn

p−→ c =⇒ XnYn
d−→ c ·X. If c = 0, then also XnYn

p−→ 0.

(iii) Xn
d−→ X, Yn

p−→ c =⇒ Xn

Yn

d−→ X
c
, provided that c 6= 0.

Proof: (i) Since Xn
d−→ X, it follows (via Theorem result) that Xn + c

d−→ X + c. Also,

Yn
p−→ c, implies (via Theorem result) that Yn − c

p−→ 0. It holds,

Yn − c = Yn +Xn − (Xn + c)
p−→ 0,

so that Theorem 6.1.17 of the course notes provides that Yn +Xn
d−→ X + c. This is what

we needed to show.

(ii) Suppose c 6= 0. By Theorem 6.1.11(x), since Yn
p−→ c, it follows that YnXn

p−→ c ·Xn.

Moreover, by Theorem 6.1.9(ii), it follows that c ·Xn
d−→ c ·X. It is,

XnYn − c ·Xn = (XnYn − c ·X)− (c ·Xn − c ·X)
p−→ 0,

and since c ·Xn
d−→ c ·X, Theorem 6.1.17 provides that XnYn

d−→ c ·X, as desired. Next,

suppose that c = 0. Let ε, k > 0 be arbitrary real numbers. It follows that

P (|XnYn| > ε) = P (|XnYn| > ε, Yn ≤
ε

k
) + P (|XnYn| > ε, Yn >

ε

k
)

≤ P (|Xn
ε

k
| > ε) + P (|Yn| >

ε

k
)

≤ P (|Xn| > k) + P (|Yn| >
ε

k
).

Since Yn
p−→ 0 and Xn

d−→ X, then for any fixed k > 0, it holds

lim
n→∞

P (|XnYn| > ε) ≤ lim
n→∞

P (|Xn| > k).

But, we can make P (|Xn| > k) as small as we like, by choosing k large. Thus,

lim
n→∞

P (|XnYn| > ε) ≤ lim
n→∞

P (|Xn| > k) = 0,



which provides that XnYn
p−→ 0.

(iii) Suppose c 6= 0. Let Zn
p−→ 1. Let Yn = c · Zn. Then, 1

Yn
= 1

Zn
· 1
c
. By parts (v) and

(viii) of Theorem 6.1.11, it follows that 1
Yn

p−→ 1
c
. From part (ii) above, with Xn

d−→ X and
1
Yn

p−→ 1
c
, implies that Xn

Yn

d−→ X
c
.�

WEAK LAW OF LARGE NUMBERS (VERSION 1): Let {Xi}∞i=1 be a sequence

of i.i.d. random variables with mean E(Xi) = µ and variance Var(Xi) = σ2 < ∞. Let

Xn = 1
n

n∑
i=1

Xi. Then, it holds

lim
n→∞

P (|Xn − µ| ≥ ε) = 0 ∀ε > 0. (1.9)

That is, Xn is consistent for µ.

Proof: Note that since the Xi are i.i.d., it holds that E(Xn) = µ and Var(Xn) = σ2

n
. Let

ε > 0 be arbitrary. From Markov’s Inequality, we have

P (|Xn − µ| ≥ ε) ≤
E(
(
|Xn − µ|

)2
)

ε2

=
Var(Xn)

ε2

=
σ2

n · ε2
.

Thus,

lim
n→∞

P (|Xn − µ| ≥ ε) ≤ lim
n→∞

σ2

n · ε2
= 0,

as desired. Since ε > 0 was chosen arbitrarily, (1.9) holds.�

KHINTCHINE’S WLLN: Let {Xi}∞i=1 be a sequence of i.i.d. random variables with

finite mean, E(Xi) = µ. Then it holds:

Xn =
1

n
Tn

p−→ µ.�

KOLMOGOROV’S STRONG LAW OF LARGE NUMBERS: Let {Xi}∞i=1 be a

sequence of i.i.d. random variables. Let Tn =
n∑
i=1

Xi. Then, it holds

Tn
n

= Xn
a.s.−→ µ <∞ ⇐⇒ E(|X|) <∞ ( and then µ = E(X)) .�



LINDEBERG-LÉVY CENTRAL LIMIT THEOREM: Let {Xi}∞i=1 be a sequence

of i.i.d. random variables with E(Xi) = µ and 0 < Var(Xi) = σ2 < ∞. Then, it holds for

Xn = 1
n

n∑
i=1

Xi that
√
n
(
Xn − µ

)
σ

d−→ Z,

where Z ∼ N(0, 1).�

FACTORIZATION CRITERION: Let X1, ..., Xn be random variables with pdf (or

pmf) f(x1, ..., xn|θ), θ ∈ Θ. Then, T (X1, ..., Xn) is sufficient for θ iff we can write

f(x1, ..., xn|θ) = h(x1, ..., xn)g(T (x1, ..., xn)|θ),

where h does not depend on θ and g does not depend on x1, ..., xn, except as a function of T.�

RAO-BLACKWELL: Let {Fθ : θ ∈ Θ} be a family of cdf’s, and let h be any statistic

in U, where U is the non-empty class of unbiased estimators of θ with Eθ(h
2) < ∞. Let

T be a sufficient statistic for {Fθ : θ ∈ Θ}. Then, the conditional expectation, Eθ(h|T ), is

independent of θ and it is an unbiased estimate of θ. Additionally,

Eθ((E(h|T )− θ)2) ≤ Eθ((h− θ)2) ∀θ ∈ Θ,

with equality holding iff h = E(h|T ).�

LEHMANN-SCHEFFÉE: If T is a complete sufficient statistic and if there exists an

unbiased estimate h of θ, then E(h|T ) is the (unique) UMVUE.

Proof: Let U be the non-empty class of unbiased estimators of θ. Let h1, h2 ∈ U. Since

T is sufficient for θ, it follows by the Rao-Blackwell Theorem that E(h1|T ), E(h2|T ) ∈ U.

Moreover,

θ = E(E(h1|T )) = E(E(h2|T )) ⇐⇒ E(E(h1|T )− E(h2|T )) = 0.

Since T is complete, it follows that E(h1|T ) = E(h2|T ). But, h1, h2 ∈ U are arbitrary, so that

E(h|T ) is the same for all h ∈ U. Thus, by the Rao-Blackwell Theorem, E(h|T ) improves

all estimators of U. Therefore, since E(h|T ) ∈ U, then E(h|T ) is the unique UMVUE for

θ.



PRINCIPLE PROPERTIES OF THE INVERSE GAUSSIAN DIS-

TRIBUTION:

Let X ∼ IG(µ, λ). Then, the pdf for X is given by

fX(x;µ, λ) =

(
λ

2πx3

)1/2

exp

{
−λ(x− µ)2

2µ2x

}
· 1{x∈(0,∞);λ,µ>0}. (1.1)

Letting 1
2
α2 = µ, Tweedie [1], claims that (1.1) is equivalent to

f1(x;α, λ) =

(
λ

2πx3

)1/2

exp
{
−λ(α · x− (2α)1/2 + 1/2x)

}
. (1.2)

By inspection, a necessary and sufficient condition for (1.2) and (1.1) to be equivalent is that

α = (2µ2)
−1
. Thus, the substitution of Tweedie, namely 1

2
α2 = µ, is invalid for (1.2)

and (1.1) to be equivalent.

Moment Generating Function of X : Assume that α = (2µ2)
−1
, so that (1.2) and (1.1)

are equivalent. To obtain the moment generating function (MGF) of X, Tweedie introduces

the notion of the Laplace transform, LX(t;µ, λ) = log(E(e−t·X)). Note that LX(−t;µ, λ), if

it exists, is the cumulant generating function for the random variable X. Subsequently, if

it exists, the MGF for the random variable X is given by exp{LX(−t;µ, λ)}. Suppose that

t ∈ C, where C is the set of complex numbers. Tweedie shows that

LX(t;α, λ) = λ(2α)1/2 − λ
√

2

(
α +

t

λ

)1/2

+ log

(∫ ∞
0

f1(x;α +
t

λ
, λ)dx

)
, (1.3)

and provided that: (i) Re(t) = 0; or (ii) Re(t) > −α · λ, the integral of (1.3) evaluates to

unity. Assume now that Im(t) = 0, so that t ∈ R. Then, provided that t > −α · λ, since

log(1) = 0, (1.3) reduces to

LX(t;α, λ) = λ(2α)1/2 − λ
√

2

(
α +

t

λ

)1/2

=
λ

µ
− λ
√

2√
2µ

(
1 +

2µ2t

λ

)1/2

=
λ

µ

(
1−

(
1 +

2µ2t

λ

)1/2
)
. (1.4)

Thus, provided that −t < α · λ, the MGF for X, is

MX(t) = exp {LX(−t;µ, λ)} = exp

{
λ

µ

(
1−

(
1− 2µ2t

λ

)1/2
)}
· 1{

t< λ
2µ2

}.�



Characteristic Function of X : The result immediately follows from (1.3) and the note

following the expression. This is due to the fact that ΦX(t) = exp{LX(−i · t;µ, λ)}, and

Re(i · t) = 0. Hence, from (1.3), and (1.4), it is

ΦX(t) = exp {LX(−i · t;µ, λ)} = exp

{
λ

µ

(
1−

(
1− 2µ2i · t

λ

)1/2
)}

.�

f Defines a Pdf: By inspection, it is clear that (1.1) is positive for all x, λ, µ ∈ (0,∞).

Shuster [2], shows that the cdf for X is given by

FX(x) = Φ[

√
λ

x

(
x

µ
− 1

)
] + exp

{
2λ

µ

}
Φ[−

√
λ

x

(
1 +

x

µ

)
], (1.5)

where Φ is the cdf for the standard normal distribution. It holds,

lim
x→ 0

FX(x) = lim
x→−∞

Φ(x) + exp

{
2λ

µ

}
lim

x→−∞
Φ(x) = 0; and

lim
x→∞

FX(x) = lim
x→∞

Φ(x) + exp

{
2λ

µ

}
lim

x→−∞
Φ(x) = 1,

where the later limit can be shown using L’Hospital’s Rule. Therefore, f, as defined by (1.1),

defines a valid pdf.�

The Pdf of the Reciprocal of X : Let Y = 1
X
. Since the support of X is (0,∞), the

transformation is one-to-one. Also, note that Y is monotone (decreasing) for X ∈ (0,∞).

It holds,

fY (y) = | d
dy
g−1(y)|fX(g−1(y)) · 1{y∈(0,∞)}

= | − 1

y2
|fX(

1

y
) · 1{y∈(0,∞)}

=
1

y2

(
y3λ

2π

)1/2

exp

{
−λ · y(y−1 − µ)

2

2µ2

}
· 1{y,µ,λ∈(0,∞)}.

=

(
λ

2π · y

)1/2

exp

{
−λ(1− µ · y)2

2µ2y

}
· 1{y,µ,λ∈(0,∞)}.�



Expected Value and Variance of X : Let κ(t) = log(MX(t)). It holds

E(X) =
d

dt
κ(t)|t=0; and

Var(X) =
d2

dt2
κ(t)|t=0. (1.6)

Proof: It is,
d

dt
κ(t) =

d

dt
log(MX(t)) =

1

MX(t)

d

dt
MX(t),

so that
d

dt
κ(t)|t=0 =

1

MX(0)
M ′

X(0) = E(X).

Also, by the product rule for derivatives, it holds

d2

dt2
κ(t) =

d

dt

(
1

MX(t)
M ′

X(t)

)
= − M ′

X(t)

(MX(t))2

d

dt
MX(t) +

1

MX(t)
M ′′

X(t),

so that
d2

dt2
κ(t)|t=0 = −(M ′

X(0))2

(MX(0))2 +
1

MX(0)
M ′′

X(0) = Var(X).�

From (1.4), it is

κ(t) = LX(−t;µ, λ) =
λ

µ

(
1−

(
1− 2µ2t

λ

)1/2
)
· 1{

t< λ
2µ2

}.
Hence,

d

dt
κ(t) = − λ

2µ

(
1− 2µ2t

λ

)−1/2(
−2µ2

λ

)
= µ

(
1− 2µ2t

λ

)−1/2

; and

d2

dt2
κ(t) = −µ

2

(
1− 2µ2t

λ

)−3/2(
−2µ2

λ

)
=
µ3

λ

(
1− 2µ2t

λ

)−3/2

.

Therefore, from (1.6), it holds that E(X) = µ, and Var(X) = µ3

λ
.�

Sufficient and Complete Statistic: We re-write (1.2) as

log(f1(x;α, λ)) = D(λ, µ) + S(x) +
2∑
i=1

Qi(λ, µ)Ti(x), (1.7)

where

D(λ, µ) =
1

2
[log(

λ

2π
) + 2λ

√
2α]; S(x) = −3

2
log(x);

Q1(λ, µ) = −λ · α; T1(x) = x;

Q2(λ, µ) = −λ; and T2(x) =
1

x
.



It follows from (1.7),

f1(x;α, λ) = exp

{
D(λ, µ) + S(x) +

2∑
i=1

Qi(λ, µ)Ti(x)

}
,

so that f1 belongs to a 2-dimensional parameter exponential family. Therefore, (via several

Theorems), (
n∑
i=1

Xi,
n∑
i=1

1
Xi

) are jointly sufficient/complete for (µ, λ).�

Maximum Likelihood Estimators of (µ, λ) : Let X1, . . . , Xn be a random sample from

IG(µ, λ), let L(µ, λ; x) be the likelihood function, and let LL(µ, λ; x) be the log of the

likelihood function. It follows from (1.1), that

L(µ, λ; x) = f (x1, . . . , xn;µ, λ)

=
n∏
i=1

(
λ

2π · x3
i

)1/2

exp

{
−λ(x− µ)2

2µ2x

}
· 1{xi∈(0,∞);λ,µ>0}

=

(
λ

2π

)n/2 n∏
i=1

x
−3/2
i exp

{
− λ

2µ2

n∑
i=1

(xi − µ)2

xi

}
· 1{xi∈(0,∞);λ,µ>0},

from which,

LL(µ, λ; x) =
n

2
(log(λ)− log(2π))− 3

2

n∑
i=1

log(xi)−
λ

2µ2

n∑
i=1

(xi − µ)2

xi
.

Differentiating the log-likelihood function (w.r.t. µ), it is

∂

∂µ
LL(µ, λ; x) =

λ

µ3

n∑
i=1

(xi − µ)2

xi
+

λ

µ2

n∑
i=1

(xi − µ)

xi

=
λ

µ3

(
n · x− 2n · µ+ µ2

n∑
i=1

1

xi

)
+
n · λ
µ2
− λ

µ

n∑
i=1

1

xi

= n · x λ
µ3
− n · λ

µ2
. (1.8)

Setting (1.8) equal to zero, we obtain that µ̂ = X. Next, differentiating the log-likelihood

function (w.r.t λ), it is

∂

∂λ
LL(µ, λ; x) =

n

2λ
− 1

2µ2

n∑
i=1

(xi − µ)2

xi

=
n

2λ
− 1

2µ2

n∑
i=1

(
xi − 2µ+

µ2

xi

)
=

n

2λ
− n · x

2µ2
+
n

µ
− 1

2

n∑
i=1

1

xi
. (1.9)



Setting (1.9) equal to zero, and assigning µ to be its MLE, µ̂ = X, we have

0 =
n

2λ
− n · x

2(x)2 +
n

x
− 1

2

n∑
i=1

1

xi

⇐⇒ − n

2λ
=

n

2x
− 1

2

n∑
i=1

1

xi

⇐⇒ 1

λ
= −1

x
+

1

n

n∑
i=1

1

xi

⇐⇒ 1

λ
=

1

n

n∑
i=1

(
1

xi
− 1

x

)
. (1.10)

Therefore, the maximum likelihood estimators for (µ, λ) are µ̂ = X and λ̂ = n·
(

n∑
i=1

( 1
xi
− 1

x
)

)−1

.

Of course, to verify that these estimates truly maximize the likelihood function, we would

need to examine the second derivatives (“pure” and “partials” with respect to each of µ and

λ), as well as the Jacobian (Wronskian) of the second partial derivatives. In particular, the

signs of these derivatives.�

UMVUE for λ : Let X1, ..., Xn be a random sample from IG(µ, λ). In his paper, Tweedie

shows that
1

λ̂
∼
χ2
n−1

n · λ
.

Recall, the expected value for a chi-square random variable is its respective degrees-of-

freedom. Thus,

E

(
1

λ̂

)
= E

(
1

n

n∑
i=1

(
1

xi
− 1

x

))
= E

(
Y

n · λ

)
=
n− 1

n · λ
,

where Y ∼ χ2
n−1. It follows that n

n−1
· 1

λ̂
is unbiased for 1

λ
. Thus, provided it is unbiased

for λ, then n−1
n
λ̂ is UMVUE for λ by the Lehmann-Scheffée Theorem, since this estimator is

a function of the joint sufficient/complete statistics,

(
n∑
i=1

Xi,
n∑
i=1

1
Xi

)
. Hence, it suffices to

show that

E

(
n− 1

n
λ̂

)
= λ. (1.11)

To show this, we require the result of the following Lemma:



Lemma: Let X ∼ Γ(n, λ), and let Y = X−1. Then, E(Y ) = λ · n−1.

Proof: Let Y = g(X) = X−1. Then, X = g−1(Y ) = Y −1. The transformation is one-

to-one, since the support of X is (0,∞), and Y is monotone (decreasing) on this interval.

Hence,

fY (y) = | d
dy
g−1(y)|fX(g−1(y)) · 1{y∈(0,∞)}

= | − 1

y2
|fX(

1

y
)

=
λn

yn+1Γ(n)
exp

{
−λ · y−1

}
· 1{y∈(0,∞)}.

Now, substituting u = λ · y−1, it is

E(Y ) =

∫ ∞
0

y · λn

yn+1Γ(n)
exp

{
−λ · y−1

}
dy

=
λ

Γ(n)

∫ ∞
0

un−2 exp {−u} dy

=
Γ(n− 1)λ

Γ(n)

= λ · n−1,

as desired. Therefore, if X ∼ Γ(n, λ), then E(Y ) = E( 1
X

) = λ · n−1.�

Now, let Y ∼ χ2
n−1. Then, Y ∼ Γ(n−1

2
, 1

2
), so that E( 1

Y
) = 1

n−1
. Hence, from (1.10), it holds

E

(
n− 1

n
λ̂

)
= E

(
(n− 1)

n · λ
n · Y

)
= (n− 1)λ · E

(
1

Y

)
= λ.

Therefore, by the Lehmann-Sheffée Theorem, (n−1)·
(

n∑
i=1

( 1
xi
− 1

x
)

)−1

is the UMVUE for λ.�

Cramer-Rao Lower Bound for λ (µ = 1) : Let X1, ..., Xn be a random sample from

IG(µ, λ). It is desired to determine the CRLB for λ when µ = 1. To determine the CRLB,

we consider the derivative of the log of the density function, as given by (1.1) above. Assume

that the regularity conditions of the theorem hold. It is,

log(f(x;µ, λ)) =
1

2
[log(λ)− log(2π · x3)]− λ(x− 1)2

2x
,

which implies that
∂

∂λ
log(f(x;µ, λ)) =

1

2λ
− (x− 1)2

2x
. (1.12)



Next, we need to determine the expectation (w.r.t λ) of the square of (1.12). However, since

f is an exponential family, Lemma 7.3.11 of Casella states that

Eλ

((
∂

∂λ
log(f(x;µ, λ))

)2
)

= −Eλ
(
∂2

∂λ2
log(f(x;µ, λ))

)
.

Thus, we have

∂2

∂λ2
log(f(x;µ, λ)) = − 1

2λ
⇐⇒ −Eλ

(
∂2

∂λ2
log(f(x;µ, λ))

)
= (2λ)−1.

Since ψ(λ) = λ, then ψ′(λ) = 1. Hence, the CRLB for the variance of any unbiased estimator

of λ, T (X), is

Varλ(T (X)) ≥ (ψ′ (λ))2

n · Eλ
((

∂
∂λ

log (f (x;µ, λ))
)2)

=
1

−n · Eλ( ∂2

∂λ2 log(f(x;µ, λ)))

=
2λ

n
.

Therefore, the CRLB (provided that the regularity conditions hold) for Varλ(T (X)) is

2λ · n−1.�

Convolutions of IG Random Variables: Let X1, ..., Xn be a random sample from

IG(µ, λ). It holds that X and Y = a · X (a > 0) also follow IG distributions. Let’s

determine the parametrization for these random variables. It follows that

E(X) =
1

n

n∑
i=1

E(Xi) = µ; and

Var(X) =
1

n2

n∑
i=1

Var(Xi) =
µ3

n · λ
.

Thus, X ∼ IG(µ, n · λ). Next, we consider the random variable, Y = a ·X. Here,

E(Y ) = a · E(X) = a · µ; and

Var(Y ) = a2 Var(X) =
a2µ3

λ
=

(a · µ)3

a · λ
.

Thus, Y ∼ IG(a · µ, a · λ). Therefore, X ∼ IG(µ, n · λ) and Y ∼ IG(a · µ, a · λ).
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